Частотно регулируемые приводы для насосов

Частотно-регулируемый электропривод насосных установок

Режимы работы центробежных насосов энергетически наиболее эффективно регулировать путем изменения частоты вращения их рабочих колес. Частота вращения рабочих колес может быть изменена, если в качестве приводного двигателя используются регулируемый электропривод.
Устройство и характеристики газовых турбин и двигателей внутреннего сгорания таковы, что они могут обеспечить изменение частоты вращения в необходимом диапазоне.

Процесс регулирования частоты вращения любого механизма удобно анализировать с помощью механических характеристик агрегата.

Рассмотрим механические характеристики насосного агрегата, состоящего из насоса и электродвигателя. На рис. 1 представлены механические характеристики центробежного насоса, оборудованного обратным затвором (кривая 1) и электродвигателя с короткозамкнутым ротором (кривая 2).

Рис. 1. Механические характеристики насосного агрегата

Разница значений вращающего момента электродвигателя и момента сопротивления насоса называется динамическим моментом. Если вращающий момент двигателя больше момента сопротивления насоса, динамический момент считается положительным, если меньше — отрицательным.

Под воздействием положительного динамического момента насосный агрегат начинает работать с ускорением, т.е. разгоняется. Если динамический момент отрицательный, насосный агрегат работает с замедлением, т.е. тормозится.

При равенстве этих моментов имеет место установившийся режим работы, т.е. насосный агрегат работает с постоянной частотой вращения. Эта частота вращения и соответствующий ей момент определяются пересечением механических характеристик электродвигателя и насоса (точка а на рис. 1).

Если в процессе регулирования тем или иным способом изменить механическую характеристику, например сделать ее более мягкой за счет введения дополнительного резистора в роторную цепь электродвигателя (кривая 3 на рис. 1), момент вращения электродвигателя станет меньше момента сопротивления.

Под воздействием отрицательного динамического момента насосный агрегат начинает работать с замедлением, т.е. тормозится до тех пор, пока вращающий момент и момент сопротивления опять не уравновесятся (точка б на рис. 1). Этой точке соответствует своя частота вращения и свое значение момента.

Таким образом, процесс регулирования частоты вращения насосного агрегата непрерывно сопровождается изменениями вращающего момента электродвигателя и момента сопротивления насоса.

Регулирование частоты вращения насоса может осуществляться или изменением частоты вращения электродвигателя, жестко соединенного с насосом, или изменением передаточного отношения трансмиссии, соединяющей насос с электродвигателем, который работает с постоянной скоростью.

Регулирование частоты вращения электродвигателей

В насосных установках используются преимущественно двигатели переменного тока. Частота вращения электродвигателя переменного тока зависит от частоты питающего тока f, числа пар полюсов р и скольжения s. Изменив один или несколько из этих параметров можно изменить частоту вращения электродвигателя и сочлененного с ним насоса.

Основным элементом частотного электропривода является частотный преобразователь. В преобразователе постоянная частота питающей сети f1 преобразуется в переменную f 2. Пропорционально частоте f 2 изменяется частота вращения электродвигателя, подключенного к выходу преобразователя.

С помощью частотного преобразователя практически неизменные сетевые параметры напряжение U1 и частота f1 преобразуются в изменяемые параметры U2 и f 2, требуемые для системы управления. Для обеспечения устойчивой работы электродвигателя, ограничения его перегрузки по току и магнитному потоку, поддержания высоких энергетических показателей в частотном преобразователе должно поддерживаться определенное соотношение между его входными и выходными параметрами, зависящее от вида механической характеристики насоса. Эти соотношения получаются из уравнения закона частотного регулирования.

Для насосов должно соблюдаться соотношение:

На рис. 2 представлены механические характеристики асинхронного электродвигателя при частотном регулировании. При уменьшении частоты f2 механическая характеристика не только меняет свое положение в координатах n — М, но несколько изменяет свою форму. В частности, снижается максимальный момент электродвигателя. Обусловлено это тем, что при соблюдении соотношения U1/f1 = U2/f2 = const и изменении частоты f1 не учитывается влияние активного сопротивления статора на величину вращающего момента двигателя.

Рис. 2. Механические характеристики частотного электропривода при максимальных (1) и пониженных (2) частотах

При частотном регулировании с учетом этого влияния максимальный момент остается неизменным, форма механической характеристики сохраняется, меняется только ее положение.

Частотные преобразователи с широтно-импульсной модуляцией (ШИМ) имеют высокие энергетические характеристики за счет того, что на выходе преобразователя обеспечивается форма кривых тока и напряжения, приближающаяся к синусоидальной. В последнее время наибольшее распространение получили частотные преобразователи на IGBT-модулях (биполярных транзисторах с изолированным затвором).

IGBT-модуль является высокоэффективным ключевым элементом. Он обладает малым падением напряжения, высокой скоростью и малой мощностью переключения. Преобразователь частоты на IGBT-модулях с ШИМ и векторным алгоритмом управления асинхронным электродвигателем имеет преимущества по сравнению с другими типами преобразователей. Он характеризуется высоким значением коэффициента мощности во всем диапазоне изменения выходной частоты.

Принципиальная схема преобразователя представлена на рис. 3.

Рис. 3. Схема частотного преобразователя на IGBT-модулях: 1 — блок вентиляторов; 2 — источник питания; 3 — выпрямитель неуправляемый; 4 — панель управления; 5 — плата пульта управления; 6 — ШИМ; 7 — блок преобразования напряжения; 8 — плата системы регулирования; 9 — драйверы; 10 — предохранители блока инвертора; 11 — датчики тока; 12 — асинхронный короткозамкнутый двигатель; Q1, Q2, Q3 — выключатели силовой цепи, цепи управления и блока вентиляторов; K1, К2 — контакторы заряда конденсаторов и силовой цепи; С — блок конденсаторов; Rl, R2, R3 — резисторы ограничения тока заряда конденсаторов, разряда конденсаторов и узла слива; VT — силовые ключи инвертора (IGBT-модули)

На выходе частотного преобразователя формируется кривая напряжения (тока), несколько отличающаяся от синусоиды, содержащая высшие гармонические составляющие. Их наличие влечет за собой увеличение потерь в электродвигателе. По этой причине при работе электропривода на частотах вращения, близких к номинальной, происходит перегрузка электродвигателя.

При работе на пониженных частотах вращения ухудшаются условия охлаждения самовентилируемых электродвигателей, применяемых в приводе насосов. В обычном диапазоне регулирования насосных агрегатов (1:2 или 1:3) это ухудшение условий вентиляции компенсируется существенным снижением нагрузки за счет уменьшения подачи и напора насоса.

При работе на частотах, близких к номинальному значению (50 Гц), ухудшение условий охлаждения в сочетании с появлением гармоник высших порядков требует снижения допустимой механической мощности на 8 — 15%. Из-за этого максимальный момент электродвигателя снижается на 1 — 2%, его КПД — на 1 — 4%, cos φ — на 5 — 7%.

Во избежание перегрузки электродвигателя необходимо или ограничить верхнее значение его частоты вращения, или оснастить привод более мощным электродвигателем. Последняя мера обязательна тогда, когда предусматривается работа насосного агрегата с частотой f 2 > 50 Гц. Ограничение верхнего значения частоты вращения двигателя осуществляется ограничением частоты f 2 до 48 Гц. Увеличение номинальной мощности приводного электродвигателя осуществляется с округлением до ближайшего стандартного значения.

Групповое управление регулируемыми электроприводами агрегатов

Многие насосные установки состоят из нескольких агрегатов. Как правило, регулируемым электроприводом оборудуются не все агрегаты. Из двух-трех установленных агрегатов регулируемым электроприводом достаточно оснастить один. Если один преобразователь постоянно подключен к одному из агрегатов, имеет место неравномерное расходование их моторесурса, поскольку агрегат, оснащенный регулируемым приводом, используется в работе значительно большее время.

Для равномерного распределения нагрузки между всеми агрегатами, установленными на станции, разработаны станции группового управления, с помощью которых агрегаты могут поочередно подключаться к преобразователю. Станции управления изготавливаются обычно для низковольтных (380 В) агрегатов.

Обычно низковольтные станции управления предназначены для управления двумя-тремя агрегатами. В состав низковольтных станций управления входят автоматические выключатели, обеспечивающие защиту от межфазных коротких замыканий и замыканий на землю, тепловые реле для защиты агрегатов от перегрузки, а также аппаратура управления (ключи, кнопочные посты и пр.).

Схема коммутации станции управления содержит в своем составе необходимые блокировки, позволяющие произвести подключение преобразователя частоты к любому выбранному агрегату и осуществить замену работающих агрегатов без нарушения технологического режима работы насосной или воздуходувной установки.

Станции управления, как правило, наряду с силовыми элементами (автоматическими выключателями, контакторами и т.п.) содержат в своем составе управляющие и регулирующие устройства (микропроцессорные контроллеры и пр.).

По требованию заказчика станции комплектуются устройствами автоматического включения резервного питания (АВР), коммерческого учета потребляемой электроэнергии, управления запорной аппаратурой.

При необходимости в состав станции управления вводятся дополнительные аппараты, обеспечивающие использование наряду с частотным преобразователем устройства плавного пуска агрегатов.

Автоматизированные станции управления обеспечивают:

поддержание заданного значения технологического параметра (давления, уровня, температуры и др.);

контроль режимов работы электродвигателей регулируемых и нерегулируемых агрегатов (контроль потребляемого тока, мощности) и их защиту;

автоматическое включение в работу резервного агрегата при аварии основного;

переключение агрегатов непосредственно на сеть при выходе из строя частотного преобразователя;

автоматическое включение резервного (АВР) электрического ввода;

автоматическое повторное включение (АПВ) станции после пропажи и глубоких посадок напряжения в питающей электрической сети;

автоматическое изменение режима работы станции с остановкой и запуском агрегатов в работу в заданное время;

автоматическое включение в работу дополнительно нерегулируемого агрегата, если регулируемый агрегат, выйдя на номинальную частоту вращения, не обеспечивал требуемой подачи воды;

автоматическое чередование работающих агрегатов через заданные промежутки времени для обеспечения равномерного расходования моторесурса;

оперативное управление режимом работы насосной (воздуходувной) установки с панели управления или с диспетчерского пульта.

Рис. 4. Станция группового управления частотно-регулируемыми электроприводами насосов

Эффективность применения частотно-регулируемого электропривода в насосных установках

Применение частотно-регулиремого привода позволяет существенно экономить электроэнергию, т. к. дает возможность использовать крупные насосные агрегаты в режиме малых подач. Благодаря этому можно, увеличив единичную мощность агрегатов, уменьшить их общее число, и следовательно, уменьшить габаритные размеры зданий, упростить гидравлическую схему станции, уменьшить число трубопроводной арматуры.

Таким образом, применение регулируемого электропривода в насосных установках позволяет наряду с экономией электроэнергии и воды уменьшить число насосных агрегатов, упростить гидравлическую схему станции, уменьшить строительные объемы здания насосной станции. В связи с этим возникают вторичные экономические эффекты: уменьшаются расходы на отопление, освещение и ремонт здания, приведенные затраты в зависимости от назначения станций и других конкретных условий могут быть сокращены на 20 — 50%.

В технической документации на преобразователи частоты указывается, что применение регулируемого электропривода в насосных установках позволяет экономить до 50% энергии, расходуемой на перекачку чистых и сточных вод, а сроки окупаемости составляют три — девять месяцев.

Вместе с тем расчеты и анализ эффективности регулируемого электропривода в действующих насосных установках показывает, что в небольших насосных установках с агрегатами мощностью до 75 кВт, особенно тогда, когда они работают с большой статической составляющей напора, оказывается нецелесообразным применение регулируемых электроприводов. В этих случаях можно использовать более простые системы регулирования с применением дросселирования, изменения числа работающих насосных агрегатов.

Применение регулируемого электропривода в системах автоматизации насосных установок, с одной стороны, уменьшает потребление энергии, с другой — требует дополнительных капитальных затрат, поэтому целесообразность применения регулируемого электропривода в насосных установок определяется сравнением приведенных затрат двух вариантов: базового и нового. За новый вариант принимается насосная установка, оснащенная регулируемым электроприводом, а за базовый — установка, агрегаты которой работают с постоянной частотой вращения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Частотный преобразователь для насоса водоснабжения

Приводами насосных агрегатов служат асинхронные или синхронные электрические двигатели. Главный недостаток электрических машин переменного тока – затруднение регулировки частоты вращения ротора и высокие пусковые токи. От скорости вращения зависят основные характеристики насоса – производительность и напор.

Для регулировки рабочих параметров насосных агрегатов применяются:

  • Задвижки, заслонки и вентили. Запорная арматура позволят изменять давление в сети, подачу жидкости.
  • Каскадное включение и отключение. При этом несколько насосов подключают к сети параллельно, регулировка характеристик достигается изменением количества одновременно работающих агрегатов.
  • Применение двигателей с фазным ротором. При этом рабочие параметры насоса регулируют путем изменения напряжения на обмотках.

Такие способы имеют ряд серьезных недостатков. При применении задвижек существенно увеличивается гидравлическое сопротивление сети и потери напора и давления, также возрастает вероятность гидравлических ударов.

Каскадная работа требует установки резервных насосов, при этом невозможно регулировать напор и расход в диапазоне производительности одного агрегата, а также плавно изменять напор и расход. Такой способ оправдан только в крупных сетях водоподачи теплоснабжения, а также в автономных системах с большим перепадом расхода.

Установка электродвигателя с фазным ротором позволяет изменять скорость вращения рабочего колеса. Это наиболее перспективой способ регулирования рабочих характеристик, однако, двигатели такого типа позволяют изменять скорость вращения в небольшом диапазоне. Кроме того, стоимость таких электрических машин существенно выше двигателей с короткозамкнутым ротором.

Для плавной регулировки производительности насосных агрегатов применяют преобразователи частоты. Принцип действия устройств основан на зависимости скорости вращения ротора от частоты тока и напряжения на обмотках электрической машины.

Регулирование напора и расхода насоса путем изменения частоты на обмотках статора лишен недостатков каскадного регулирования, изменения параметров путем регулировки пропускной способности труб запорно-регулирующей арматурой.

Преобразователи частоты могут применяться в цепях асинхронных двигателей с короткозамкнутым и фазным ротором, синхронных машин с обмотками и постоянными магнитами.

Принцип работы электропривода насосов с регулировкой производительности по давлению.

Самый распространенный способ регулирования подачи воды в небольших автономных водопроводных системах – изменение производительности по давлению. Насосные станции для таких систем состоят из одного или нескольких насосов с частотно-регулируемым приводом, датчика давления, напорного бака, устройства управления.

При нулевом потреблении воды в системе поддерживается постоянное давление. При открытии крана, давление в трубах падает. Датчик вырабатывает сигнал, который поступает на преобразователь частоты. Устройство плавно разгоняет двигатель насоса, увеличивая производительность агрегата, при этом давление в системе поддерживается на заданном уровне. Подача насосного агрегата изменяется пропорционально расходу.

На насосных станциях с несколькими насосами при дальнейшем увеличении производительности преобразователь частоты включает резервные агрегаты. При снижении расхода, устройство плавно снижает производительность.

В приводе циркуляционных насосов автономных систем отопления применяется частотно-регулируемая схема с изменением подачи теплоносителя по температуре и давлению. В схему добавлен датчик температуры, регулировка производительности осуществляется по 2 характеристикам.

Преимущества частотно-регулируемого привода насосов.

Устройства изменения частоты применяют как для привода насосов небольших автономных водопроводных и отопительных систем, так и для централизованных сетей отопления, горячего и холодного водоснабжения. Преобразователи частоты устанавливают также в электроприводах агрегатов подачи технологических жидкостей, высокоточных дозаторов, систем автоматического тушения пожаров и охлаждения.

Частотные преобразователи позволяют:

  • Осуществлять плавный пуск. При запуске насоса на полную мощность резко увеличивается давление, что может привести к гидроударам. Кроме того, при старте на полном напряжении ток увеличивается в 3-5 раз и более. Преобразователи частоты снижают пусковые токи, а также снижают вероятность гидравлических ударов.
  • Снизить потребление электроэнергии. При работе насосов на полузакрытые задвижки существенно снижается к.п.д. агрегатов. Преобразователи частоты позволяют регулировать подачу в зависимости от потребления путем изменения производительности. Это позволяет снизить потребляемую мощность на 20-70%.
  • Осуществлять автоматическое управление. Современный преобразователь частоты – многофункциональное устройство. Оборудование позволяет регулировать расход и напор по нескольким характеристикам. Устройство также защищает двигатель и насос от перегрузок, перепадов напряжения, обрыва фаз, «сухого хода», заклинивания вала, других аварий и ненормальных режимов работы.
  • Обеспечивать связь с удаленными пунктами управления. Промышленные преобразователи частоты, которые используют для насосных станций городского или сельского водоснабжения, централизованных сетях теплоснабжения, поддерживают базовые протоколы связи. Такие приводы встраиваются в сложные системы автоматизации.

При помощи специализированных устройств можно осуществлять групповое управление насосами на станциях, подключать и отключать резервные агрегаты, задавать алгоритмы управления.

Как выбрать преобразователи частоты.

Производители силовой электроники выпускают общепромышленные специализированные преобразователи частоты. Модельные линейки устройств специального назначения включают серии для насосных агрегатов и станций.

Частотные преобразователи такого типа имеют ряд специальных функций. Такие устройства не требуют сложной настройки, программное обеспечение, ПИД или ПИ регуляторы, опции регулирования уже содержит заводской комплект.

Для управления насосом или группой агрегатов можно приспособить общепромышленный преобразователь, однако программирование и настройка таких устройств занимает много времени, а также требует установки специального ПО. Лучше приобрести частотник специального назначения.

Примерный набор специальных функций преобразователей частоты для насосов:

  • Групповое управление несколькими агрегатами.
  • Режим сброса осевших загрязнений.
  • Подавление механического резонанса.
  • Предпусковая сушка электродвигателя.
  • Защита от «сухого хода», заклинивания вала.
  • Режим заполнения трубопровода.
  • Пожарный режим (для устройств насосов установок или систем автоматического тушения огня).
  • Специальные алгоритмы автоматического регулирования работы насосных агрегатов.

Функции оборудования зависят от модели и назначения устройства. Производители преобразователей выпускают линейки однофазных преобразователей для насосов бытового назначения с простейшим функциональным набором, серии для мощных полностью автоматизированных насосных станций.

Ряд производителей насосов, например, Wilo, Grundfos, POMPE ZANNI и другие поставляют агрегаты с приводом, куда уже встроен преобразователь частоты. Такие устройства не требуют сложной наладки. После простой адаптации к системе, оборудование полностью готово к работе.

Для модернизации электроприводов и при замене двигателей, а также при построении системы автоматизации и управления крупными насосами или станциями, преобразователь частоты подбирают по параметрам.

Устройства для частотно-регулируемого привода выбирают:

По электрическим характеристикам. Номинальное напряжение, ток, количество фаз электродвигателя должны соответствовать аналогичным параметрам устройства частотного регулирования. Мощность преобразователя лучше выбирать с запасом 10-20%. Пуск двигателей насосных агрегатов проходит в легких или средних режимах, большой запас мощности и высокая перегрузочная способность частотного преобразователя в этом случае не нужны.

По типу электродвигателя. В качестве привода насосов применяют асинхронные двигатели с короткозамкнутым и фазным ротором, синхронные двигатели с пусковыми обмотками и постоянными магнитами. Преобразователь должен быть адаптирован для работы с конкретным типом электрической машины.

По диапазону частот. Для циркуляционных низкоскоростных насосов достаточно преобразователя с интервалом регулирования частоты выходного напряжения от 200 до 400 Гц, для глубинных и скважных насосов с высоким напором нужно устройство от 200-800 Гц. Производитель преобразователей обычно указывает диапазон регулировки в об/мин. Это значительно упрощает выбор.

По количеству входов и выходов для датчиков и удаленных устройств управления, поддерживаемым протоколам связи. При выборе частников для проводов, встраиваемых в системы автоматизации, нужно учитывать количество аналоговых, цифровых и релейных выходов и входов для подключения датчиков, ПК пунктов управления и контроля, панелей операторов. Количество управляющих входов и выходов должно превышать число подключаемого оборудования. Это позволит не покупать новый преобразователь при реконструкции или модернизации системы АСУТП. Преобразователь также должен поддерживать протоколы связи, применяемые в автоматизированной системе. Ведущие производители силовой электроники выпускают серии частотных преобразователей с возможностью установки карт поддержки различных протоколов обмена данными.

По классу защиты от пыли и влаги. Исполнение корпуса частотного преобразователя IP должно соответствовать условиям эксплуатации. Устройства IP20-40 размещают в сухих незапыленных помещениях или электротехнических шкафах управления. Преобразователи в корпусе IP54 и IP65 можно устанавливать в местах с высокой влажностью, запыленных помещениях. Допускается размещать устройства рядом с насосом.

Как подключать частотный преобразователь к насосу.

Подключение частотного преобразователя к двигателю насосов осуществляется в соответствии с требованиями производителя и правилами устройства электроустановок ПУЭ:

  • Перед преобразователем устанавливают автоматические выключатели или контакторы и предохранители. Коммутационные и защитные аппараты необходимы для долговременного отключения электропривода и аварийного отключения при коротких замыканиях. Электроаппараты выбирают по типовой методике.
  • Сечение жил кабелей силовой цепи должно соответствовать потребляемому току. Марка кабеля и диаметр жил указывают в инструкции по монтажу. Входные и выходные силовые цепи, контрольные кабели управления прокладывают раздельно.
  • Заземляют преобразователь отдельным проводом сечением не меньше диаметра жил питающего кабеля. Заземление присоединяют к общему контуру напрямую. Применять для заземления нулевой проводник запрещается.
  • Для подключения датчиков и удаленного оборудования управления и контроля нужно использовать экранированные кабели. При длине линии больше 50 м в разрыв цепи устанавливают фильтры электромагнитных помех.
  • Перед подключением обмотки двигателей соединяют в звезду или треугольник, исходя из номинального значения напряжения частотника. Двухскоростные электродвигатели с фазным ротором включают на одну скорость.

Все соединения выполняют в соответствии с требованиями безопасности и электромагнитной совместимости. При необходимости во входную и выходную цепь преобразователей включают фильтры гармоник. Соответствие подключений схеме и качество контактных соединений проверяют до наладки преобразователя.

Настройка преобразователей для насоса.

Перед наладкой и первым пуском насосных агрегатов еще раз проверяют подключения. Далее отключают подачу напряжения на двигатель и подают напряжение на частотный преобразователь. При этом должны заработать вентиляторы, засветиться дисплей, а на экране должно отобразиться сообщение “OFF”.

Затем переводят преобразователь в режим настройки, вводят характеристики двигателей, диапазоны скоростей, время разгона и остановки, другие характеристики. Устройства с автоматическим определением параметров двигателей переводят в режим адаптации.

После ввода и сохранения рабочих параметров настраивают специальные функции и задают режимы регулирования.

Далее подают напряжение в выходную цепь, проверяют направление вращения вала, работу двигателя во всех диапазонах.

Промышленные преобразователи в автоматизированных системах настраивают совместно с оборудованием управления и контроля. После внесения корректировок и окончательной настройки и полной адаптации привода насосный агрегат вводят в эксплуатацию.

Установка преобразователей частоты в приводы насосов эффективна практически во всех случаях. Устройства обеспечивают увеличение энергоэффективности (до IE 5 по стандарту IEC 60034-30 2008 в приводах с синхронными двигателями на постоянных магнитах), существенно снижают износ трубопровода и другого оборудования.

Источник

Читайте также:  Замена сальника углового редуктора рено дастер полный привод
Оцените статью
Авто Сервис