Что такое моторный привод для автоматического выключателя

Мотор-редуктор для модульных автоматических выключателей

Мотор-редуктор для модульных автоматических выключателей служит для управления данными аппаратами путём перемещения рукоятки управления электрического аппарата. Исходя из названия очевидно, что данное устройство конструктивно имеет два основных элемента – редуктор, который воздействует на рукоятку автоматического выключателя и электродвигатель, приводящий в движение редуктор.

Мотор-редуктор, в зависимости от типа, может осуществлять управление автоматическими выключателями с количеством полюсов от одного до четырех. Для управления автоматическим выключателем посредством мотор-редуктора достаточно подать импульс, что позволяет организовать дистанционное управление автоматами вручную, путём подачи команд обслуживающим персоналом, или автоматически — когда подача управляющей команды на мотор-редуктор осуществляет устройство защиты и автоматики.

Рассмотрим основные технические характеристики и функционал мотор-редукторов для модульных автоматических выключателей.

Какие функции обеспечивают мотор-редукторы для модульных автоматических выключателей?

Прежде, всего, дистанционное управление автоматическими выключателями посредством подачи импульсной или фиксированной команды.

Команда на мотор-редуктор может подаваться, как вручную, посредством нажатия на кнопку (импульсная команда) или путем выбора одного из положений переключателя (фиксированная команда).

Следующая функция — повторное включение автоматического выключателя . Мотор-редуктор может осуществлять повторное включение автоматического выключателя в заданном режиме. Например, может быть реализована функция автоматического повторного включения на воздушной линии электропередач, на которой часто возникают неустойчивые аварийные ситуации, самоустраняющиеся за короткое время.

Например, из-за сильного ветра произошло схлестывание проводов линии электропередач, что привело к возникновению междуфазного короткого замыкания. Когда провода вернулись в исходное положение, КЗ самоустранилось — в данном случае целесообразно восстановить питание на линии, что и осуществляет функция АПВ автоматического выключателя, реализуемая мотор-редуктором.

На мотор-редуктор могут дополнительно устанавливаться вспомогательные устройства, которые расширяют его функционал. Например, может быть установлено устройство, обеспечивающее сигнализацию и индикацию положения автоматического выключателя или устройство, обеспечивающее мгновенное или с заданной выдержкой времени отключение автоматического выключателя при отклонении напряжения электрической сети от заданного значения (диапазона).

Мотор-редуктор для управления автоматами имеет, как правило, переключатель, который позволяет отключать дистанционный (автоматический) режим управления электрическим аппаратом. При выборе местного режима возможно управление автоматическим выключателем путем нажатия кнопок, расположенных на корпусе мотор-редуктора.

Также можно отключить мотор-редуктор. В данном случае установленный в паре с автоматом мотор-редуктор, не препятствует традиционному ручному управлению электрическим аппаратом.

Кроме того, мотор-редуктор может быть блокирован в отключенном положении автоматического выключателя путем установки специального замка. Данная особенность особенно актуальна в электроустановках, когда при выводе в ремонт одной из линий, необходимо принять меры, предотвращающие ошибочно включение автоматического выключателя, посредством которого подается напряжение на выведенную в ремонт линию. В данном случае путем блокировки мотор-редуктора будет исключена возможность ошибочного включения автомата.

Что касается питания цепей управления модульного мотор-редуктора, то в данном случае существует несколько вариантов. Цепи управления, а также вспомогательные элементы, обеспечивающие реализацию дополнительных функций, могут получать питание от сети как переменного, так и постоянного тока.

Область применения мотор-редукторов для автоматических выключателей

Мотор-редукторы для автоматических выключателей широко применяются в схемах автоматического управления освещением, обогревом, двигателями различного назначения.

Возможность реализации дистанционного управления позволяет реализовать возможность управления автоматическими выключателями удаленно, например, из центрального диспетчерского пункта.

Мотор-редукторы в паре с автоматическими выключателями можно рассматривать в качестве альтернативы множеству схем, построенных на контакторах (магнитных пускателях).

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Мотор автоматы и автоматические выключатели – в чем разница?

Как мотор автоматы, так и автоматические выключатели, это устройства, которые предназначаются для защиты и управления электрическими цепями, и электродвигателями в частности. Несмотря на сходство в выполняемых задачах, эти типы устройств имеют массу различий. В чем именно заключается отличия между устройствами?

Особенности мотор автоматов

Мотор автоматы представляют собой устройства, задача которых – защищать электрические двигатели от неполнофазных режимов работы, перегрузок и коротких замыканий. В зависимости от того, какой тип привода используется для работы прибора, мотор автоматы разделяются на кнопочные и поворотные. Устройства второго типа ориентированы на локальное управление работой электрического двигателя. Примечательно, что часть мотор автоматов совместимы с электромагнитным приводом. Его можно подключить для удаленного контроля.

Несмотря на некоторое сходство с автоматическими выключателями, мотор автоматы имеют и массу отличий:

  • мотор автоматы изготавливаются исключительно в трехполюсном исполнении;
  • присутствует точная регулировка теплового расцепителя в широком диапазоне;
  • есть встроенные либо устанавливаемые снаружи дополнительные контакты;
  • наличие кнопки либо рычага, предназначенного для ручного управления нагрузкой;
  • высокая электродинамическая устойчивость по сравнению с выключателями – до 100 кА;
  • возможность объединения автомата и пускателя в единый блок (это позволяет корпус);
  • ток электромагнитного ресцепителя равен току, при котором автомат работает на индуктивность.

Также стоит отметить широкие возможности по модернизации мотор автоматов при помощи дополнительных приспособлений. Наиболее часто на практике используются монтажные платы, клеммники, боксы с разными уровнями защиты, соединители, а также крепежи для установки этого оборудования в монтажных шкафах.

При необходимости можно увеличить глубину протекции электродвигателя путем монтажа дополнительных элементов. На эту роль хорошо подходят такие устройства, как реле минимального напряжения и расцепитель. Также мотор автоматы отличаются повышенной коммутационной способностью, так как они изначально предназначаются для работы с большими пусковыми токами, которые наблюдаются при запуске двигателей.

Источник

Основы АСУ ТП и КИП — в статьях Ua.Automation.com

Доктор Вольт, для Ua.Automation.com

Сегодня мы продолжим наш рассказ об АВР, и поговорим о такой их разновидности как АВР на рубильниках с коммутирующей частью в виде мотор-привода (о других разновидностях, кстати, поговорим тоже).

Рубильники с мотор-приводом еще называют «Переключателями нагрузки с мотор-приводом» или «Автоматизированными переключателями нагрузки». Здесь и далее мы будем применять термин «Рубильники с мотор-приводом».

Если в схеме АВР с контакторами заменить их на рубильник с мотор-приводом, то мы получим также АВР, но с другой коммутирующей частью.

В 1-й части я уже писал о классификации этих устройств: контакторы, рубильники с мотор-приводом, автоматические выключатели, рубильники соленоидного типа. Это основные типы. Еще можно применять так называемые статические переключатели, но это отдельная тема не для сегодняшнего нашего разговора…

Используя вместо контакторов рубильник с мотор-приводом мы получаем тот же АВР, который выполняет все те же функции, что и контакторный АВР, но, с одним огромным преимуществом.

Это преимущество заключается в самой конструкции такого рубильника-переключателя. Здесь не надо механической блокировки, здесь не надо электрической блокировки – все просто.

Механизм рубильника такой, что контакты средней точки (они же подключаются к нагрузке) подключаются либо к контактам 1-го ввода либо к контактам 2-го ввода: как бы происходит перекидывание силовых контактов. Поэтому такие рубильники и называют – перекидные.

Автоматизация рубильника заключается в присоединении двигателя к ручке переключения, вернее к валу переключения, на которых размещены силовые контакты. Управляя двигателем мы управляем переключением.

Еще одно преимущество этого рубильника в том, что при отказе цепей управления автоматическим переключением (отказе релейной схемы) рубильник можно переключить руками! Ручку вставил в паз, повернул и произвел нужное переключение. Это увеличивает надежность схемы питания нагрузки.

Основным недостатком рубильника с мотор-приводом является его медлительность. Ну не может он быстро переключаться, как контакторы. Время переключения такого типа рубильников от 0,5 с до 4 с (время приведено примерное и оно также зависит от габарита и номинального тока рубильника).

Реально, при применении рубильника в схемах управления, время переключения может быть еще большим. Это связано с дополнительными специальными временными задержками.

Здесь остановлюсь и распишу подробнее, вернее дополню предыдущую информацию о взаимоблокировках.

В 1 части я уже упоминал явление взаимоблокировок – механических и электрических. «Электрическая взаимоблокировка – это система вспомогательных контактов, включенных определенным образом в цепи питания катушек контакторов, для исключения одновременной подачи на них напряжения управления». Но существует, можно сказать, подвид электрической блокировки – временная блокировка. Проще говоря, к системе вспомогательных контактов добавляются контакты реле времени, которые замедляют подачу напряжения на катушки контакторов. Реле времени используются как электрического типа, так и пневматического типа. Данный вид блокировки применяется, если на контакторах нет возможности установить механическую блокировку или этот тип контакторов просто не имеет механической блокировки.

Отметим, что для АВР на три и более ввода интересны комбинации контакторов и рубильников с мотор-приводами. Эта «интересность» дает повышенную надежность и быстрое переключение.

АВР на автоматических выключателях

Сразу проведем разделение – могут применятся автоматические выключатели так называемого корпусного исполнения и автоматические выключатели выкатного исполнения. Хотя, в принципе, можно еще выделить вариант на автоматических выключателях модульного типа.

Корпусные автоматические выключатели – это которые в корпусах (немодульные), например, на токи от 100А до,… ну скажем, 1250А. (Хотя лучше, наверное, до 800А… Это объясняется тем, что на ток 1250А и выше, лучше, целесообразнее применить автоматические выключатели выкатного исполнения).

В данном типе АВР в качестве коммутирующего элемента применяются автоматические выключатели с мотор-приводом, который автоматически включает и отключает автоматический выключатель. Еще в данном АВР можно произвести переключение «вручную», что есть тоже хорошо для эксплуатации.

Преимущество состоит в том, что АВР не только производит коммутацию, но и имеет защиту по каждому вводу! В предыдущих вариантах этого (защиты по вводам) не было. В тех вариантах необходимо было дополнительно предусматривать защиту вводов (от токов КЗ и перегрузок).

Преимущество серьезное, но сопровождается и рядом недостатков:

– медлительность – время переключения более 0,5 с. Т.е. хуже, чем у контакторов, но сравнимо с рубильниками с мотор-приводом.

– конструктивная особенность. Мотор-привод крепится на корпус выключателя, что имеет свои особенности – не всегда надежная работа. Тут со мной могут поспорить, особенно, поставщики оборудования. Но я практик и могу утверждать, что, например, если после транспортировки изделия необходимо опять настраивать систему АВР, мотор-приводов, механических блокировок и прочая и прочая… а раз идут дополнительные работы, то это – недостаток.

– механическая блокировка. Она также крепится дополнительно(см.выше), либо сзади автоматических выключателей, либо спереди на мотор-приводы. Требует наладки – в общем, «не фонтан».

На все эти недостатки, конечно, закрывают глаза, если это решение запроектировано или этого захотел Заказчик, или по-другому сделать нельзя…

Кстати, можно выделить еще один тип автоматических выключателей, а именно, выдвижного исполнения. Это другая разновидность корпусного автоматического выключателя с выдвижной корзиной. Достаточно сложная система – автоматический выключатель + мотор-привод + выдвижная корзина + механическая блокировка.

АВР на выкатных автоматических выключателях

Здесь в качестве коммутирующих устройств применяются автоматические выключатели, так называемого, выкатного исполнения. Это очень интересные автоматические выключатели.

Воздушные автоматические выключатели выкатного исполнения имеют конструктивную особенность: есть корпус автоматического выключателя и есть корзина с контактной системой, куда входит (и выходит :)) этот корпус…

Конструктивно сам автоматический выключатель несколько отличается от корпусного автоматического выключателя: другая система контактов, встроенный мотор-привод, куча всяких катушек и «штук» — блок-контактов, независимых расцепителей, расцепителей минимального напряжения, электронных расцепителей, различных систем силовых контактов и т.д. и т.п… Это объясняется тем, что они предназначены для коммутации больших рабочих токов (от 630 до 6000А) и, соответственно, больших токов КЗ. Здесь и требуются все те «штуки», которые обеспечивают надежность работы, повышенную чувствительность – не побоюсь этого слова – разумность…

Данные автоматические выключатели имеют тросовые механические блокировки, причем для различных вариантов АВР, скажем, не только для двух автоматических выключателей (по приведенным штатным схемам), но и более сложных АВР для двух автоматических выключателей и секционного автоматического выключателя.

Время срабатывания АВР достаточно большое (хотя здесь уже, на больших токах коммутации, это не важно. Вернее, быстрое время срабатывания АВР здесь не нужно).

1) Автоматические выключатели данного типа имеют ограниченный ресурс включения/отключения.

2) Представьте себе следующую ситуацию: ток коммутации 1000А или более, а тут АВР «щелкает» туда-сюда… и что после этого будет с контактами, пусть они даже и посеребренные – они сгорят! Потом, еще есть такое понятие, как переходные процессы, связанные с большими токами при перекоммутациях. Это значит, что к рабочему току добавляется бросок тока, читай – резкое его увеличение, например, если нагрузка имеет индуктивный характер. Вот поэтому, здесь все медленно и размеренно, в соответствии с логикой переключения. Пропал ввод – отключился вводной выключатель (данного ввода). Через выдержку времени включился выключатель другого ввода. И наоборот – клац! – отключение! . выдержка …клац! – включение …Тут уже встает вопрос оперативного напряжения питания для релейных цепей управления…

АВР на рубильниках соленоидного типа

Рассмотрим АВР на рубильниках соленоидного типа, к примеру, от производителя ASCO. Американский продукт: надежный, быстрый,… дорогой.

Принцип – похож на рассмотренный выше, в примере с АВР на рубильниках с мотор-приводом. Силовая часть – группа перекидных контактов – принцип коромысла, когда замыкание происходит либо с одной стороны, либо с другой, а середина подключена к нагрузке. Т.е. механическая блокировка заложена в самой конструкции.

Перекидные контакты приводится в действие не электродвигателем, а соленоидом, на который подается управляющее напряжение. Переключение происходит очень быстро! Производитель может обеспечить быстроту переключения в 50 мс!

Их много. Большой ресурс + большая перегрузочная способность + быстродействие + блок управления = полностью законченный АВР. Еще можно добавить, что есть возможность переключения «вручную» при отключенном напряжении управления.

Но даже в этой бочке меда есть изрядная ложка дегтя.

Дороговизна. (Кстати, не забудьте еще защитить питающие вводы: данный переключатель – только переключатель). Могут возразить, что «зато это надежный вариант»… Потом расскажут, что если провести сравнения по номинальному току и сравнить традиционные варианты, то это не всегда и дорого… или «относительно не дорого»…

Я даже не буду возражать – кто себе может позволить приобрести в щитовую АВР такого типа – я только за! Тем более, кто внимательно изучит эти устройства и «въедет» во все нюансы, то найдет там еще много интересных технических решений. Например, различные типы переключений данных рубильников – с открытым переходом, с закрытым переходом и не только.

Есть вариант так называемого синфазного переключения – очень интересная возможность! Правда, нужен специальный блок управления, но зато – какое решение – переключение с одного питающего ввода на другой под нагрузкой, без пропадания «сети» в момент «0». То есть без броска тока! Блок контролирует оба ввода и в момент фазовой синхронизации – «перехода напряжения обеих вводов через 0» производит переключение.

Все это «Просто Супер»! Но, опять же есть одно «но». Технически грамотных решений с применением таких рубильников мало. Например, быстрота переключений нужна? – нужна… а для какого случая? Необходимо четко представлять себе, что вы хотите реализовать.

Столкнулся года 2,5 назад со следующим применением рубильников ASCO – есть сетевые вводы, и есть ДГУ, причем, достаточно большой мощности (время выхода на режим около 0,5-1 мин). И там везде эти рубильники. Решение интересное и дорогое – рубильники ASCO с блоками управления, «продвинутой» серии, с блоком синфазного включения, с мониторами, с байпасными переключателями ASCO! (есть и такие у них!)… По сложности – почти, как на подводной лодке )).

А потом оказалось, что всем этим оборудованием эксплуатационный персонал не умеет пользоваться. Потом, все критические нагрузки защищены ИБП (как минимум, 7 минут!). Вопрос – а зачем это все? Насколько целесообразно применение такого оборудования? Вывод – средства потрачены не вполне рационально.

Решение можно было сделать более простым, как по оборудованию, так и по обслуживанию – и более дешевым. Например, между сетевыми вводами применить рубильники ASCO – быстрое переключение, ИБП практически не разряжают батареи. А для подключения ДГУ применить рубильник перекидного типа с мотор-приводом. (Надо цепи обводного питания – это делается также просто, на тех же ручных перекидных рубильниках. Опять, надо определиться с целесообразностью этих ремонтных цепей).

Если посчитать время переключения, то получаем следующий вариант: после пропадания обоих питающих вводов – 2-5 с на контроль «сети», потом запуск ДГУ 60 с, потом контроль напряжения ДГУ 2-3 с и переключение – 3-4 с. Итого: — 72 секунд, чуть более 1 минуты. ИБП держат критические нагрузки минимум 5-7 минут. Уложились совершенно спокойно.

Источник

Читайте также:  Авториа опель инсигния полный привод
Оцените статью
Авто Сервис