Привод ведущих колес схема

Назначение и устройство приводов ведущих колес

Приводы ведущих колес предназначены для передачи крутящего момента от главной передачи к колесам .

На легковых автомобилях получили распространение две конструкции привода, которые применяются в зависимости от типа подвески (типы подвесок рассмотрены в главе «Ходовая часть»).

Первая конструкция — полуоси, установленные в жестком картере на подшипниках. Полуоси с картером и главной передачей образуют мост. Конструкция моста показана на рисунке ниже. В случае применения моста подвеска является зависимой. Стойки стабилизатора поперечной устойчивости обеспечивают подвижное соединение упругого стабилизатора со ступицей или поворотным кулаком. Мы бы рекомендовали полиуретановые стойки стабилизатора Триалли.

Вторая конструкция — приводы с шарнирами равных угловых скоростей. В этом случае допускается взаимное перемещение колес друг относительно друга и относительно главной передачи. Также возможен поворот управляемых колес.

Задний мост

Общий вид привода передних колес с шарнирами равных угловых скоростей показан на нашем сайте в разделе «Ходовая часть».

Принцип работы такого привода следующий. Внутренние шарниры 11 (рисунок ниже) шлицами соединены с полуосевыми шестернями дифференциала, куда приходит крутящий момент от коробки передач.

1 — гайка ступицы; 2-упорная шайба гайки; 3-корпус наружного шарнира; 4-большой хомут чехла наружного шарнира; 5 — защитный чехол наружного шарнира; 6 — малый хомут чехла наружного шарнира; 7 — вал привода; 8 — малый хомут чехла внутреннего шарнира; 9 — защитный чехол внутреннего шарнира; 10 — большой хомут чехла внутреннего шарнира; 11 — корпус внутреннего шарнира; 12 — стопорное кольцо хвостовика внутреннего шарнира; 13 — внутренняя обойма внутреннего шарнира; 14 — шарики внутреннего шарнира; 15 — сепаратор внутреннего шарнира; 16 — фиксатор внутреннего шарнира; 17 — стопорное кольцо обоймы внутреннего шарнира; 18 — упорное кольцо обоймы внутреннего шарнира; 19 — упорное кольцо обоймы наружного шарнира; 20 — стопорное кольцо обоймы наружного шарнира; 21 — внутренняя обойма наружного шарнира; 22 — шарики наружного шарнира; 23 — сепаратор наружного шарнира

Читайте также:  Tiguan нужен ли полный привод

Далее крутящий момент передается с внутренних шарниров на валы 7, а затем на наружные шарниры 3. На шлицах наружных шарниров установлены ступицы ведущих колес. Таким образом, крутящий момент передается от главной передачи к колесам автомобиля.

Наличие шариков 14 и 22 позволяет шарнирам поворачиваться на некоторый угол относительно вала, поэтому колесо имеет возможность перемещаться относительно главной передачи и противоположного колеса этой же оси. Вместо шариков в шарнире равных угловых скоростей могут быть установлены три подшипника особой формы. Такие шарниры называются «трипод».

Источник

ПРИВОД К ВЕДУЩИМ КОЛЕСАМ

Совокупность деталей, подводящих крутящий момент непосред­ственно к ведущим колесам, называют приводом ведущих колес.

Передача крутящего момента от дифференциала к ведущим коле­сам в зависимости от типа подвески колес осуществляется с помощью цельных валов полуосей или карданных передач. Полуоси применяются в приводе ведущих неуправляемых колес; карданные передачи с простыми карданными шарнирами — в приводе неуправляемых колес с подрессоренной главной передачей.

Карданные передачи с синхронными шарнирами (равных угловых скоростей) используются в приводе управляемых колес. Привод к ведущим колесам должен обеспечить отсутствие пульсации момента при полном ходе колеса, допускаемой подвеской автомобиля.

Полуоси ведущего моста с жесткой балкой (рис. 15) в зависи­мости от испытываемых полуосью нагрузок условно делятся на полу­разгруженные (рис. 15-а), на три четверти разгруженные (рис. 15-б) и полностью разгруженные (рис. 15-в).

Полуразгруженная полуось (рис. 15-а) имеет внешнюю опору, установлен­ную внутри балки 5 моста (рис. 16). При этом со стороны колеса полуось воспринимает все усилия и моменты, действующие от до­рог. Полуразгруженные полуоси имеют наиболее простую конструк­цию и поэтому широко применяются на легковых автомобилях. Обычно в таких конструкциях отсутствует ступица колеса; ее за­меняет фланец полуоси, к которому непосредственно прикреплены диск колеса и тормозной барабан.

Рис.15. Схемы загруженности полуосей ведущих неуправляемых мостов:

а – полуразгруженная полуось; б — полуось разгружена на три четверти; в – полностью разгруженная полуось.

Наружный конец полуоси опирается на шариковые (рис. 16-а) или роликовые конические (рис. 16-б) подшипники, которые передают как нормальные, так в осевые усилия. При использовании шариковых подшипников для передачи осевой силы одного из направлений на полуось запрессовывается запорное кольцо 6 (рис. 16-а).

На три четверти разгруженная полуось (рис. 15-б) имеет внеш­нюю опору между ступицей колеса и балкой моста (рис. 17). При этом изгибающие моменты от реакций тангенциальной тяговой силы Рр или тормозной силы Рτ и от боковой (осевой) силы Y , возникающей, например, при повороте автомобиля, (см. рис. 15-б) воспринимаются одновременно и полуосью, и балкой моста через подшипник.

Рис.16. Соединение полуразгруженной полуоси с колесом:

1 – полуось; 2 – ступица колеса; 3 – подшипник; 4 – конусное крепление ступицы колеса; 5 – балка ведущего моста; 6 – запорное кольцо.

Доля нагрузок, приходящихся на полуось, зависит от конструкции подшипника и его жесткости.

Рис.17. Соединение разгруженной на три четверти полуоси с колесом:

1 – полуось; 2 – подшипник; 3 – балка ведущего моста; 4 – фланец полуоси.

Боковая (осевая) сила Y загружает подшипник моментом, который вызывает перекос подшипника и резко снижает срок его службы. Вследствие указан­ных недостатков полуоси такого типа имеют ограниченное приме­нение.

Рис.18. Соединение полностью разгруженной полуоси со ступицей колеса:

1 – полуось; 2 – балка ведущего моста; 3 – ступица; 4 – подшипник; 5 – крепление ступицы колеса.

Полностью разгруженная полуось имеет внешнюю опору со ступицей колеса, установленной на разнесенных двух роликовых или радиально-упорных шариковых подшипниках (рис. 15-в и 18).

Полуось теоретически нагружается только крутящим моментом, передавае­мым от дифференциала к колесам. Однако вследствие упругой де­формации балки моста, технологической несоосности ступицы ко­леса и шестерни полуоси дифференциала, неперпендикулярности плоскости фланца к оси полуоси возможно возник­новение деформации изгиба полуоси. Возникающее при этом напряже­ние изгиба составляет 5—70 МПа.

На рис. 19 приведена конструкция привода к управляемым колесам лег­кового автомобиля с полуразгруженной полуосью и кулачковым шарниром. Получили распростране­ние приводы к управляе­мым колесам неразрез­ного моста, в котором полуось раз­груженного типа имеет шарниры равных угловых скоростей.

Рис.19. Привод к ведущим управляемым колесам легкового автомобиля:

1 – ступица колеса; 2 – подшипник; 3 – полуось; 4 – пружина; 5 – шарнир равных угловых скоростей.

Полуоси воспринимают значительные переменные нагрузки. Обычно
их выполняют с утолщениями по концам, чтобы внутренний диаметр шлицев был не меньше основного диаметра полуоси. Для снижения концентрации напряжений стремятся увеличить радиусы переходов от одного диаметра к другому, уменьшить глубину шли­цев, что вызывает необходимость увеличения их числа (от 10 для легковых автомобилей и до 18 — для грузовых). Значительно уменьшается концентрация напряжений при переходе на эвольвентные шлицы.

Источник

Как это работает: трансмиссия

Сцепление позволяет на непродолжительное время отсоединить трансмиссию от двигателя и обеспечивает плавное включение трансмиссии при трогании автомобиля с места или при переключении передач.

Коробка передач служит для получения различных тяговых усилий на ведущих колесах путем изменения крутящего момента, передаваемого от двигателя к карданному валу, а также для изменения направления вращения ведущих колес при движении задним ходом и для отключения трансмиссии от двигателя на длительное время.

Карданная передача позволяет передавать крутящий момент от выходного вала коробки передач к заднему мосту при изменяющемся (при движении автомобиля) угле между осями вала коробки передач и ведущего вала главной передачи.

Главная передача служит для того, чтобы передать крутящий момент под углом 90 градусов от карданного вала к полуосям, а также для уменьшения числа оборотов ведущих колес по отношению к числу оборотов карданного вала. Уменьшение частоты вращения механизмов трансмиссии после главной передачи приводит к увеличению крутящего момента и, соответственно, увеличивает силу тяги на колесах.

Дифференциал обеспечивает возможность вращения правого и левого ведущих колес с разными скоростями на поворотах и неровной дороге. Две полуоси, связанные с дифференциалом через полуосевые шестерни, передают крутящий момент от дифференциала к правому и левому ведущим колесам. Дифференциалы, устанавливаемые между приводами колес ведущей оси, называют межколесными, между разными осями — межосевыми (в полноприводных трансмиссиях).

Полноприводные автомобили имеют большое разнообразие схем трансмиссий. Их можно условно разделить на три группы.

a. Полный привод, подключаемый водителем. В такой схеме трансмиссии обязательно есть раздаточная коробка, при этом на большинстве моделей нет межосевого дифференциала. Раздаточная коробка распределяет крутящий момент между передней и задней осями (мостами).

б. Полный привод, подключаемый автоматически. В большинстве таких трансмиссий постоянно ведущими являются передние колеса, а между осями вместо дифференциала установлена фрикционная муфта с электронным управлением или вискомуфта. Вискомуфта (вязкостная муфта) — передает крутящий момент при разных скоростях вращения частей ее корпуса за счет трения кремнийорганической жидкости между дисками. Вискомуфта может устанавливаться между осями или встраиваться в корпус дифференциала для его автоматической блокировки. Фрикционные муфты передают крутящий момент за счет трения при сжатии пакета дисков.

в. Постоянный полный привод. Автомобили с такой трансмиссией обязательно имеют межосевой дифференциал. Передачу мощности к четырем колесам используют не только для повышения проходимости (у вседорожников), но и для лучшей реализации разгонных свойств автомобиля. Оба эффекта достигаются за счет перераспределения силы тяги — на каждом колесе она получается меньше, соответственно ниже вероятность их пробуксовки.

Основные требования, предьявдяемые к трансмиссии:

— обеспечение высоких тяговых качеств и скорости машины при прямолинейном движении и повороте;
простота и легкость управления, исключающие быструю утомляемость водителя;
высокая надежность работы в течение длительного периода эксплуатации;
малые масса и габаритные размеры агрегатов;
простота (технологичность) в производстве, удобство в обслуживании при эксплуатации и ремонте;
высокий КПД;
— в машинах высокого класса добавляется требование бесшумности.

Источник

Автомобильный справочник

для настоящих любителей техники

Приводные валы

Крутящий момент, развиваемый двигателем ав­томобиля, должен передаваться через коробку передач и дифференциал на ведущие колеса, для чего в автомобилях используются приводные валы. При движении автомобиля колеса посто­янно перемещаются вверх-вниз, а управляемые передние колеса еще и поворачиваются впра­во-влево, что не позволяет применять жесткое соединение приводных валов с другими агрега­тами автомобиля. Если двигатель расположен спереди, а ведущие колеса — задние, то в качестве приводного используется вал с карданными шар­нирами (карданный вал).

Задача приводного вала — эффективно пере­давать крутящий момент от одного агрегата к другому, независимо от того, расположены они соосно или со смещением относительно друг друга.

Приводной вал должен работать в широком диапазоне частоты вращения и при этом обе­спечивать возможность достаточно больших взаимных перемещений соединяемых элементов во всех плоскостях. Разнообразие требований к шарнирам приводных валов привело к появле­нию самых разных вариантов привода.

История создания приводных валов

Всерьез о трансмиссии задумались создатели первых автомобилей. Сначала общепринятым был привод на задние колеса, так как решить про­блемы переднего привода не удавалось. В случае передних ведущих колес крутящий момент дол­жен равномерно передаваться не только при ли­нейном смещении колеса вверх-вниз, но и при повороте колеса из стороны в сторону.

Для заднего привода передача крутящего момента от двигателя к заднему мосту была реализована с помощью продольного вала с кар­данными шарнирами. Такой подход к решению проблемы был более простым, ведь углы откло­нения таких шарниров небольшие и не влияют на ходовые качества автомобиля.

Изобретение карданного шарнира восходит к XVI столетию; авторами считаются итальянец Джероламо Кардано и англичанин Роберт Гук.

В середине XVI века Кардано создал кольцевой шарнир, в котором корабельный компас оставал­ся в горизонтальном положении, несмотря на морскую качку.

В 1664 году Роберт Гук подтвердил патентом, что его кольцевой шарнир способен соединить концы двух несоосных валов, расположенных под углом друг к другу (рис. 2 «Универсальный шарнир Роберта Гука«).

Термины «карданный шарнир» или «шарнир Гука» и сегодня напоминают об этих двух авторах давнего изобретения.

С появлением переднего привода карданные шарниры использовались и там, но в связи с повышением требований к управляемости и ди­намике автомобиля поиск более оптимальной передачи крутящего момента привел к появлению шарниров равных угловых скоростей (ШРУС).

На современных легковых автомобилях кар­данный шарнир применяется только на продоль­ном карданном валу привода задних ведущих ко­лес, хотя и здесь постепенно сдает свои позиции. Различия между карданным шарниром и ШРУ­Сом объясняются в следующих главах.

На грузовых автомобилях карданный шар­нир по-прежнему используется на продольном карданном валу привода задних колес, а также в виде сдвоенного карданного шарнира — на по­перечных приводных валах.

В декабре 1926 года французские инженеры Пьер Фенай и Жан-Альбер Грегуар получили па­тент на изобретенный ими шарнир Tracta. Этот шарнир состоял из четырех деталей, соединен­ных скользящими направляющими. Чтобы не распадаться, он должен был постоянно находить­ся внутри полусферы.

Шарнир изготавливался на обычных универ­сальных станках и мог использоваться для пере­дачи большого крутящего момента, поэтому во время Второй мировой войны им оснащались многие французские, английские и американские полноприводные автомобили.

Для шарнира Tracta (рис. 3 «Деталировочный чертеж шарнира Tracta») впервые было использовано определение «гомокинети­ческий», которое и по сей день используется для обозначения шарниров равных угловых скоростей. Сам шарнир сегодня уже не приме­няется.

Как и в Европе, в Америке тоже пытались ре­шить проблему синхронного вращения, и 4 мая 1923 года Карл Вайсс запатентовал разработан­ный им вариант такого шарнира (рис. 4 «Чертеж к патенту шарнира Вайсса«).

Этот шарнир изготавливался с 1934 года, но его массовый серийный выпуск начался только после Второй мировой войны. До середины 80-х годов прошлого века он применялся на автомо­билях Mercedes-Benz.

В то время, как шарнир Вайсса допускал отклонение не более чем на 20° и применялся на автомобилях с задним приводом, шарнир Tracta мог работать уже под углом до 50°.

В современном автомобилестроении шарнир Вайсса, не в последнюю очередь из-за своей большой удельной массы, практически не при­меняется.

Самый распространенный в настоящее время ШРУС основан на патенте, который получил ин­женер Ford Альфред Ганс Рцеппа в июне 1933 года (рис. 5 «Чертеж к патенту шарнира Рцеппа«).

Для достижения современного технического уровня потребовалось много исследовательской работы. Главную роль в этом сыграли английская фирма Hardy Spicer и основанная в 1948 году немецкая компания по производству шарниров Lohr&Bulmkamp.

На базе шарнира Рцеппа, который не допускал осевого смещения, эти две фирмы разработали универсальный ШРУС с возможностью продоль­ного перемещения деталей.

Системы привода

Большая часть выпускаемых сегодня легковых автомобилей оснащается приводными залами с шарнирами равных угловых скоростей. От­дельные схемы привода ведущих колес по­казаны с гомокинетическими (от греческого homos = одинаковый и kine = двигаться) шарни­рами (рис. 6 «Схемы привода ведущих коле»).

При переднем приводе ведущими являются передние колеса. На приводных валах со стороны колеса при­меняются жесткие ШРУСы (без возможности продольного перемещения деталей), а со сторо­ны коробки передач — универсальные (с возмож­ностью продольного перемещения). Передние колеса — управляемые, поэтому угол поворота в шарнире со стороны колеса должен достигать примерно 50°.

Из-за поперечного расположения двигателя и связанной с этим асимметрии в моторном отсеке приводные валы могут быть разной длины.

При заднем приводе ведущими являются за­дние колеса. На приводных валах как со стороны колеса, так и со стороны коробки передач применяются универсальные ШРУСы, поскольку в этом случае шарнир — в отличие от переднего привода — дол­жен компенсировать только изменение длины ва­лов из-за хода подвески вверх-вниз.

При полном приводе ведущими являются все колеса. Шарниры приводных валов применяются точ­но так же, как на описанных выше переднем и заднем приводах. Крутящий момент от силового агрегата на задние или (при расположенном сзади двигателе) на передние колеса передается с помощью продольного вала.

Частота вращения валов в этом случае может достигать 6000 об/мин, поэтому продольные валы оснащаются высокооборотными шарнирами. Далее отдельные типы шарниров рассматриваются более подробно.

Общие показатели для приводных валов

Наряду с передачей усилия задачей приводных валов является и равномерная передача крутяще­го момента на ведущие колеса.

Угловая скорость

Приводные валы только с одним шарниром вра­щаются неравномерно.

Если два вала соединить простым карданным шарниром под определенным углом и вращать вал I с постоянной угловой скоростью ω1 то вал II будет вращаться с неравномерной угловой скоро­стью ω2 (рис. 7 «Приводные валы с одним шарниром«).

Эта неравномерность, часто называемая по­грешностью карданного шарнира, выражается в синусоидальном колебании угловой скорости вала II, как показано на графике цикла вращения 360° (рис. 8 «Изменение угловой скорости в зависимости от положения карданного шарнира«).

При 0°, 180° и 360° вилка шарнира на валу I расположена горизонтально и обладает меньшей угловой скоростью, чем в вертикальных положе­ниях 90° и 270°.

Такое ускорение и замедление крестовины шарнира соответственно изменяет и угловую ско­рость вала II.

Поскольку решению этой проблемы способ­ствуют угловое и параллельное смещение валов (за счет конструктивно обусловленного располо­жения элементов трансмиссии и достаточно эла­стичных опор), карданные валы автомобиля всег­да оснащаются двумя шарнирами. Это позволяет компенсировать неравномерно­сти вращения вала.

Максимальный угол в шарнире

Максимальный угол отклонения от горизонтали (рис. 9 «Угол в шарнире«) показывает, под каким углом может работать шарнир, соответствуя требованиям по равномерности передачи крутящего момента и долговечности.

В автомобильной технике максимальный угол в шарнире может составлять более 50°.

Схемы расположения карданных валов

Неизбежно возникающую неравномерность вра­щения можно компенсировать последователь­ным размещением двух шарниров на одном валу.

При этом различают два варианта их располо­жения: Z-схема и W-схема.

Z-схема

Z-схема или Z-изгиб представляет собой наибо­лее распространенный вариант применения кар­данного вала. В этом случае изгиб происходит только в одной плоскости (рис. 10 «Z-схема«).

Для абсолютно синхронного вращения веду­щего и ведомого валов, соединенных карданным валом, вилки шарниров этого общего вала долж­ны находиться в одной плоскости, а углы в шар­нирах должны быть одинаковы.

W-схема

Еще одним способом избежать нежелательных колебаний частоты вращения между валами I и II является W-схема их расположения (рис. 11 «W-схема«).

И в этом случае углы в карданных шарнирах должны быть одинаковыми, а их вилки — нахо­диться в одной плоскости.

Общее правило для Z-схемы и W-схемы за­ключается в том, что карданный вал и соединяе­мые им концы ведущего и ведомого валов долж­ны лежать в одной вертикальной плоскости.

В случае бокового смещения при использова­нии Z-схемы достаточно, чтобы пространствен­ный угол оставался минимальным.

Чтобы избежать нежелательных колеба­ний частоты вращения вала при использовании W-схемы, угол смещения необходимо высчитать заранее (рис. 12 «Боковое смещение«).

Источник

Оцените статью
Авто Сервис