Вторая жизнь dvd привода

Старый DVD-привод превращается… в лазерный микроскоп

В наше время DVD-приводы постепенно выходят из употребления, мало кто уже покупает диски или записывает их сам, а старые диски постепенно деградируют, ведь химическое покрытие на болванках не вечное.

Но для ненужного привода есть полезное применение. Например, из него можно смастерить лазерный микроскоп на Arduino (примечание: по факту требуется две лазерные головки, то есть два ненужных привода).

Это оптический микроскоп, который использует для сканирования образца сфокусированный лазерный луч.

Cканирование осуществляется путём перемещения лазера по двум осям в координатной сетки: x и y. Словно сканер, он проходит по всей поверхности объекта — и замеряет отражённый сигнал. Изображение составляется в специальном программном обеспечении, которое объединяет воедино результаты сканирования каждой точки.


Лазерная головка CD/DVD

Например, в в проекте GaudiLabs на фото вверху микроскоп изготовлен из двух лазерных головок HD DVD. Лазер из такой головки сканирует образец, фокусировка происходит с помощью собственного фокусирующего механизма. Движение луча — с помощью отклоняющих катушек лазера в головке.

Один из вариантов лазерного микроскопа — конфокальный лазерный сканирующий микроскоп, позволяющий реконструировать трёхмерные структуры по наборам изображений на разной глубине. Конфокальные лазерные сканирующие микроскопы часто используются вместе с флуоресцентными материалами для изучения клеток и других биологических образцов.


Принцип конфокальной визуализации запатентован в 1957 году Марвином Минским, Dahn

Разрешение изображения определяется количеством измерений, сделанных в направлении x, и количеством линий в направлении y. Максимальное разрешение ограничено апертурой объектива и длиной волны лазера, как и в обычных оптических микроскопах. При сканировании флуоресцентных веществ разрешение часто ограничено силой сигнала. Его можно увеличить за счёт использования более чувствительных фотодетекторов или увеличения интенсивности освещающего лазера.


Белок бета-тубулин в клетке ресничной инфузории Tetrahymena визуализируется с помощью флуоресцентных антител. Фото получено с коммерческого конфокального микроскопа, Павел Яснос

Какое разрешение у лазерных головок CD и DVD? Очевидно, его должно быть достаточно для считывания ямок на поверхности компакт-диска, которыми кодируется информация (0 и 1).

У дисков DVD эти ямки примерно вдвое меньше по размеру, чем у CD, а у HD DVD — ещё вдвое меньше.

Конструкция микроскопа GaudiLabs

Ребята из швейцарской лаборатории GaudiLabs начали с проверки концепции, что прибор в принципе возможно сконструировать.


Первый прототип

Конструкция микроскопа состоит из двух лазерных головок. Первая излучает лазер и сдвигает его по оси x. На второй закреплён сканируемый образец — она движется в направлении y. Вместо фотодетектора используется простой фотодиод. Катушки контролирует схема Arduino с приводом, а изображения обрабатывает опенсорсная утилита Processing. Разрешения сканирования около 1,1 мкм (толщина человеческого волоса около 50 мкм).

Для второго прототипа была изготовлена печатная плата с микроконтроллером Arduino Micro со специальными коннекторами для лазерных головок.


Верхняя и нижняя стороны печатной платы, куда крепятся две лазерные головки (репозиторий на GitHub со схемами и программным обеспечением)

Программное обеспечение отправляет сканеру параметры сканирования и получает данные сканирования построчно. Поддерживается установка следующих параметров:

  • Тип лазера (ИК, красный, синий для головок CD, DVD и Blu-Ray)
  • Мощность лазера
  • Положение сканирования
  • Разрешение сканирования
  • Сенсор (A0, S1, S2, RF, DIF)
  • Цветовая схема и яркость

Вот как выглядят ямки на поверхности CD-ROM:


Ямки на поверхности CD-ROM, сфотографированные самодельным лазерным сканирующим микроскопом

Некоторые другие фотографии:


Сканы бактерий с разным разрешением и разными цветовыми схемами


Лазерные сканы клеток дрожжей

В данном проекте использовались головки PHR-803T из привода Xbox 360 (HD DVD).

Конечно, GaudiLabs далеко не первые, кто сделал лазерный микроскоп из оптического DVD-привода. Например, немецкий инженер Ханнес Золинер выполнил аналогичный проект в рамках своей магистерской диссертации.

  • Схемы сборки и комплектующие
  • FPGA
  • Программное обеспечение


Лазерный микроскоп Ханнеса Золинера

Фокусировка в микроскопе Золинера

Процесс сканирования в микроскопе Золинера

На сайте Instructables есть пошаговая инструкция для Arduino по сборке.

См. также научные статьи 2016 и 2018 годов с описанием подобных установок: Hacking CD/DVD/Blu-ray for Biosensing (ACS Sens. 2018, 3, 7, 1222–1232, doi: 10.1021/acssensors.8b00340) и Generating SEL and SEU with a class 1 laser setup (конференция RADECS 2016, doi: 10.1109/RADECS.2016.8093163).

Источник

Форум Хабаровска — 27R.Ru — 27 Регион

Вторая жизнь DVD-привода

Вторая жизнь DVD-привода

Непрочитанное сообщение Shev » 27 дек 2007, 00:39

Непрочитанное сообщение Shev » 27 дек 2007, 08:01

Наверно у всех еще с детства была мечта иметь свой собственный мощный лазер, способный прожигать стальные листы, теперь мы можем на шаг приблизиться к мечте! листы сталирезать не будет, а вот пакеты, бумагу, пластмассу легко!
Для нашего лазера нам понадобится во первых сломанный или не очень резак! причем DVD-RW. чем выше скорость записи DVD-R, тем мощнее там стоит лазер! в 16х приводах стоят 200мВт красные лазеры, а также лазер ИК диапазона, но о нем позже. Разбираем резак,вытаскиваем оптическую часть.Вот так выглядит эта часть резака:

ценного там только выходная линза и два лазера.
Теперь достаем самое главное!

А теперь техника безопасности для вас и для лазера!

лазер из DVD-RW относится к классу 3B, а значит опасен для зрения! не направляйте луч в глаза! даже глазом моргнуть не успеете, как потеряете зрение! парнишка на одном форуме засветил себе нечаянно, попал на несколько тысяч уёв. это ему считай повезло. сфокусированным лучом ослепить можно и со ста метров! смотрите куда светите!

Как можно испортить ЛД?
Да очень просто! стоит превысить ток и ему конец! причем доли микросекунд будет достаточно!
именно поэтому ЛД боятся статического электричества. Оберегайте ЛД от него!
на смом деле ЛД не сгорает, просто рушится оптический резонатор внутри и ЛД превращается в
обычный светодиод. резонатор рушится не от тока, а от световой интенсивности, которая в свою
очередь от тока и зависит. Также надо быть внимательным к температуре. при охлаждении лазера
КПД его растет и при том же токе интенсивность возрастает и может разрушить резонатор! Осторожнее!
Еще его легко убить переходными процессами, возникающими при включении и выключении! от
них стоит защититься.

Теперь продолжим разбирать привод))
Д остаем лазер и его радиатор, сразу же припаеваем к его ногам небольшой
неполярный конденсатор на 0,1мкФ и полярный побольше! так мы спасем
его от статики и переходных процессов, которые ЛД очень не любят!
Теперь время подумать о питании нашего лазера.ЛД питается примерно
от 3V и потребляет 200мА. Лазер это не лампочка!! никогда не соединяйте
его напрямую к батарейкам! без ограничительного резистора его убьют и
2 батарейки от лазерной указки!! ЛД нелинейный элемент, поэтому питать его
надо не напряжением, а током! то есть нужны токо ограничивающие элементы.
рассмотрим три схемы питания ЛД от простейшей, к наиболее сложной.
Все схемы питаются от аккумуляторов.
1 вариант
ограничение тока резистором. см рисунок

сопротивление резистора определяется экспериментально, по току через ЛД.
стоит остановиться на 200мА, дальше риск спалить больше. хотя мой ЛД и на 300мА работал прекрасно. для питания подойдут три любых аккумулятора на нужную емкость. также удобно использовать аккумулятор от
мобильного телефона(любого).

Достоинства: простая конструкция, высокая надежность.
Недостатки: ток через ЛД постепенно падает. и толком не понятно когда
конструкцию пора подзаряжать. использование трех аккумуляторов усложняет
конструкцию и неудобна зарядка.

Данную схему удобно размещать в китайском фанарике, где стоит батарея из трех ААА(мизинчиковых) батаеек

В этой схеме все гораздо сложнее, и она прекрасно подходит для стационарного варианта лазера!
В драйвере используется микросхема LM317, которая включена стабилизатором тока. См рисунок.

Драйвер поддерживает постоянный ток через ЛД независимо от питания(не меньше 5В) и температуры.
Советую скачать даташит на эту микросхему и разобраться основательней.

это то, что нужно! питание от двух аккумуляторов, стабильное напряжение(а следовательно и ток) на ЛД, которое не зависит от уровня зарядки акккумуляторов! Когда аккумуляторы разрядятся, схема выключится и через ЛД будет идти малый ток (слабое свечение). Наиболее умный и экономичный драйвер! КПД около 90%. и все это на одной LM2621 в малюсеньком корпусе 3х3мм!! тяжело паять, зато у меня получилась плата 16х17мм! См рисунок

дроссель L1 я намотал на шару) микруха умная, сама во всем разберется. я намотал 15 витков проводом 0.5мм на дросселе от компьютерного БП. внутренний диаметр дросселя 2.5мм, проницаемость феррита неизвестна. диод шоттки любой 3-х амперный. например 1N5821,30BQ060,31DQ10,MBRS340T3,SB360,SK34A,SR360.
Резистором R1 настраиваем ток диода. советую при настройке подключить туда переменник на 100к.
Кстати, все испытания желательно проводить на мертвом ЛД! электрические параметры остаются неизменными.

Выбрав для себя подходящую схему, собираем её!

Ну а дальше полет для фантазии!! нужно придумать как закрепить оптику! причем ЛД нужно поставить на радиатор!
при большом токе он очень хорошо греется! так что заранее продумывайте конструкцию.

удобно использовать лазерную указку как основу для коллиматора. в ней стоит неплохая линза. но луч получается примерно 5мм диаметром, а это много. лучшие результаты показывает родная оптика (выходная линза) но с ней свои трудности. фокусное расстояние мало, а значит фокус очень сложно настроить. но в тоже время это позволяет получить луч диаметром 1мм!! к слову, чем уже луч, тем большая энергия прикладывается к 1мм^2 таким лучом можно влегкую шинковать черные пакеты)) если же выполнять фокусировку не в луч, а в точку, то в этой точке плавится пластмасса, режется изолента и многое другое!! кстати спички зажигаются влет!!

Источник

Вторая жизнь DVD

Александр Чечин

Не спешите выбрасывать свой старый СD или DVD-привод, даже если он разучился читать диски. В его конструкции есть несколько очень интересных деталей, которые можно использовать в своих проектах. Чаще всего из CD/DVD извлекают двигатели. Особенно ценным является механизм точного позиционирования головки чтения/записи, содержащий биполярный шаговый двигатель.

В интернете легко найти массу примеров плоттеров, лазерных граверов, станков с программным управлением или даже 3d принтеров на базе нескольких конструктивов CD/DVD. Например, вот такой супер дешевый 3d принтер:

Однако скетчей и необходимого софта для управления всем этим хозяйством у авторов подобных самоделок найти практически невозможно. Сложно найти даже схему подключения таких моторов.

Сегодня мы научимся подключать шаговый двигатель от CD/DVD привода и управлять им при помощи Arduino. Использовать будем только стандартные средства, которые легко приобрести: Arduino UNO, «адафрутовский» моторшилд и беспаечную макетку. У любого «ардуинщика» подобные средства всегда в наличии.

Разобираем DVD и извлекаем из него механизм передвижения головок. Шаговый двигатель подсоединяется к материнской плате привода плоским шлейфом, который можно просто отрезать. Искомая деталь выглядит приблизительно так.

Разобираем DVD и извлекаем из него механизм передвижения головок. Шаговый двигатель подсоединяется к материнской плате привода плоским шлейфом, который можно просто отрезать. Искомая деталь выглядит приблизительно так.

Припаяем к контактам двигателя провода, если провода одного цвета, то условные начала обмоток, чтобы далее не запутаться, отметим красным маркером.

Соберем схему. Моторшилд может управлять двумя биполярными шаговиками, которые подключают к винтовым клемникам М1/М2 или М3/М4, каждая из обмоток — к своему «М». Если вы случайно перепутаете обмотки или подключите свой двигатель к клемникам иначе, ничего страшного не произойдет, возможно, двигатель изменит направление вращения или просто не запустится. Исправьтесь.

Максимальная величина тока через обмотки шагового двигателя данного типа может достигать 500 мА, поэтому для мотора нужно использовать отдельный блок питания соответствующей мощности, а перемычку на плате моторшилда нужно обязательно снять! Напряжение питания шагового двигателя 5В. Соблюдайте полярность при подключении блока питания к моторшилду.

Скетч для «подвигать мотором» очень простой. Используем только стандартную библиотеку AFMotor и ее возможности. Скорости и настройки подбираем экспериментально.

//создаем экземпляр класса AF_Stepper под названием motor_1

//задаем число шагов на оборот двигателя (200) и

//клемник (2 — М3/М4), к которому подключен двигатель

AF_Stepper motor_1(200, 2);

//задаем скорость хода каретки привода

motor_1.setSpeed(10);

//двигаем каретку привода на 250 шагов вперед

motor_1.step(250, FORWARD, MICROSTEP);

//двигаем каретку привода на 250 шагов назад

motor_1.step(250, BACKWARD, MICROSTEP);

Запускаем и наслаждаемся работой механизма.

Первый шаг к домашнему станку с программным управлением, граверу или 3d принтеру сделан. Поздравляю!

Источник

Читайте также:  Универсальный привод feuma hu 1010
Оцените статью
Авто Сервис